Развенчиваем мифы зеленой энергетики

Германия

Лидер энергии по движению к чистой энергетике. Наверное никого не удивит, что одновременно Германия еще и европейский лидер по ценам на электричество для потребителей. Решает проблемы балансировки пилы производства, скидывая ее на соседей – Польшу, Чехию и Голландию. В основном страдают именно эти три страны, так как они соединены магистралями с севером Германии, основным регионом ПАГ-генерации. Проблема стоит настолько остро, что соседи либо уже установили, либо требуют установки трансграничных блокираторов, которые должны их защищать от притока «бесплатной» энергии.

Понятно, что потенциал решения проблем за счет соседей довольно ограничен, и довольно быстро приводит либо к уничтожению у них нормальной энергетики (Австралия), либо к требованиям прекратить «поставку» нежелательной энергии (США и Европа). В случае использования только одного из указанных методов балансировки расходы очень быстро начинают расти экспоненциально, делая абсолютно бессмысленным переход к «чистой» энергетике. Поэтому эксперты предлагают использовать какую-либо комбинацию из этих методов, чтобы хоть немного снизить суммарные расходы.

Тем не менее, по оценке Международного энергетического агентства, даже при оптимальном управлении процессом трансформации традиционной энергетики в «чистую», при доведении доли ПАГ в энергосистеме до 45% совокупные расходы системы будут увеличиваться на 20-30%. Так как трудно рассчитывать на оптимальное управление столь сложным процессом, то в реальной жизни величина увеличения расходов превышает 50%.

Очевидно, что само по себе это не имеет какого-либо смысла и несет колоссальный экономический ущерб «зараженному» обществу. Развитие ПАГ базируется только и исключительно на религиозном базисе – борьбы с углекислым газом.

2018, Станислав Безгин (also known as Тояма Токанава)

Вам также может быть интересно:

  • Как смартфон следит за тобой. 10 неожиданных способов
  • «Мозговой центр» Пентагона призвал «сменить режим в Беларуси»
  • Ловим «на совок». Три причины защищать СССР

12Ж1Л

В триоде Мю-20 ; S-2,5mA/V ; Ri-8k

EL34

Для раздумий; внутреннее сопротивление EL34 в триодном вкл. порядка 1,2к, УЛ — 7-8к, пентод — 16-18к.
Sapienti sat.

Гэгэн

Для ламп 6С3П в ФИ:
Ea-380V, Ua-145V, Ia-12mA, Ra-18k, Uk-1,5V, Rk общ-620 Ом.

———————————————

6С4С

Пример для 6С4С.

при 2,5к по 2й гармонике 4% третьей 0,1%, выходная мощность 2,85Вт
при 2,8к по 2й гармонике 3,75%, третьей 0%, выходная мощность 2,7Вт
при 3к по 2й гармонике 3,5%, третьей 0%, выходная мощность 2,6Вт
При 3,2к по 2й гармонике 3,4% третьей 0% выходноы мощность 2,5Вт
При 3,5к по 2й гармонике 3,3%, третьей 0,1%, выходная мощность 2,4Вт
при 4к по 2й гармонике 3%, третьей 0,2%, выходная мощность 2,2Вт
при 6к по 2й гармонике 2,4% третьей 0,25%, выходная мощность 1,75вт
При 8к по 2й гармонике 2% третьей 0,3%, выходная мощность 1,3Вт.
При 10к по 2й гармонике 1,8% Третьей 0,33% выходная мощность 1,1Вт

6П36С

4,5к — внутреннее сопротивление 6П36С в ТЕТРОДНОМ ВКЛ. В ТРИОДНОМ порядка 0,65к

Выходное сопротивление SRPP каскада на лампах 6П36 в триодном вкл ~ 180 Ом.
Наибольшая выходная мощность при Rn=2*Rвых = 350-400 Ом.
Комфортная при Rn=3*Rвых. (Ra -600 Om)

Гэгэн

6Ф5П (мю триода — 70), 6Ф4П (65), 6Ф3П (75)

6Ф3П Ктр=31. (Ra=8КОм/8Ом, или 4КОм/4Ома)

——————————————————————————-

SE Трансформатор на железе ОСМ1-0,16
———————————————
Лaмпы in triod: 6Ф3/5П, 6П18/43П, 6П13C/31C/41C, 6LR8, 6KY8.

>> Железо ШЛ32 х 40. Окно 55х19
>> Габариты намотки примерно 49 х 15

Ra-5k, Rn-8 Ohm.

Первичная обмотка
Провод 0,25, в изоляции — 0,3
К-во витков в слое 155
Коэффициент заполнения — 0,95.
к-во слоёв и секций — 4-5-5-4

общее к-во слоёв — 18, витков — 2790

Коэффициент трансформации 24

Вторичная обмотка — 122 витка
Провод 0,7, в изоляции 0,75 в секции два слоя по 61 виток.

Количество секций — 3, соединение параллельное

Порядок намотки 1-2-1-2-1-2-1

Габарит намотки
0,3*18=5,4
0,75*6=4,5
Бумага 20*0,05=1
Общ — 11

Коэффициент вспучивания 1,3.
Высота намотки 11*1,3=14,3 при габарите 15мМ.

Зазор
0,1мМ при токе 50мА
0,12мМ 60мА.
0,15мМ до 80мА
===============

6Э5П

Зелёная нагр. прямая — 1,8Вт
Синяя нагр прямая — 1,5Вт.
Лиловая нагр. прямая — 1,2Вт.
Без учёта КПД однотактного выходного трансформатора.

Для 6Э5П в тетродном вкл, Ri=8k, рабочая точка; Ua=160V, Ug2=150V, Ia=50mA, Ug1=-1,75V; Ra=3k.
Коэффициент динамич усиления ~60.
Если трансформатор 1:1, нагрузка вторички — 2,7-3к, если 1:0,5 — 1,35-1,5к.
При нормальном трансе такой каскад вполне линеен по АЧХ

Параллельно первичке никакого доп. резистора не нужно, разве что, на всяк. случай цепь Цобеля 10к — 3-5нФ. (Гэгэн)

6Ф1П

Диверсификация за счет расширения сетей

Предполагается, что в одном относительно небольшом районе, например, на балтийском побережье Германии, ветер может отсутствовать, но если взять всю Европу в целом, то ветер где-нибудь, да найдется – к примеру, на каких-нибудь островах возле Англии. На практике использовать это для балансировки прерывистости невозможно по следующим причинам:

  • необходимость строительства двойного-тройного объема генерирующих мощностей в каждом районе, чтобы один район при необходимости мог обеспечить все остальные;
  • необходимость строительства мощных, дорогостоящих сетей, объединяющих все районы;
  • очень часто безветренная погода накрывает сразу огромные территории, например всю Австралию, или почти всю Европу.

Тем не менее, в настоящее время 34 страны Европы пытаются реализовать проект создания единой энергосистемы – ENTSO-E, которая должна работать от Афин до Осло, включая в себя и островные государства.

Рубрики

  • new
  • Авторские статьи
  • Акустические системы
  • Гитарные усилители
  • Ламповые радиоприёмники
  • Ламповый фонокорректор
  • Микрофонный усилитель
  • Питание
  • Питание усилителей
  • Программы
  • Программы для Аудио
  • Радиолампы
    • Октальные
      • Пентоды
      • Тетроды
      • Триоды
    • Пальчиковые
      • Пентоды
      • Триоды

        Двойные триоды

  • Схемы усилителей
    • Гибридные усилители
    • Ламповые
      • Трансформаторы для ламповых усилителей
      • Усилители PP
      • Усилители SE

        Усилители для наушников

    • Предварительные усилители, тембра, эквалайзеры

      Ламповые тембра

    • Транзисторные
      • Транзисторные класса «AB»
      • Транзисторные класса «А»
      • Усилители на IGBT транзисторах
    • Усилители для наушников ламповые
  • Усилитель для наушников
  • Фазоинверторы
  • Фонокорректоры

Южная Австралия

Замечательный (и, к счастью для Австралии, очень небольшой по населению и ВВП) штат, в котором несколько лет назад к власти прорвались лейбористы, фанатики «зеленой религии». Они благополучно довели долю солнца и ветра в своем энергобалансе до 50%, и уничтожили в штате угольную энергетику. В результате штат полностью стал зависеть от работы магистральных интерконнекторов, соединяющих его с энергосистемой ближайшего штата Виктория. Южная Австралия несколько лет частично скидывала свои проблемы и расходы на дублирование ПАГ-генерации на энергосистему Виктории. Частично – потому, что потребительские цены на электричество в штате Южная Австралия одни из самых высоких в мире. Как и следовало ожидать, в результате в штате Виктория была убита крупная угольная станция, работавшая на буром угле и дававшая самое дешевое электричество. Теперь уже два этих штата скидывают свои проблемы по балансировке на угольные станции и гидроэнергетику, которые еще продолжают работать в других австралийских штатах.

Данный эксперимент интересен еще и тем, что энергосистема юго-восточной части Австралии хотя и довольно крупная, но замкнутая, у нее просто нет соседей, на которых можно далее сбросить проблемы. В результате мы можем спокойно наблюдать, что происходит в энергосистеме, власть над которой захвачена фанатиками «зеленой энергии». Население Южной Австралии добровольно взяло на себя роль кроликов для испытаний – нам, сторонним наблюдателям, это весьма удобно и не причиняет хлопот.

Перепроизводство прерывистой альтернативной энергии

ПАГ имеет достаточно низкий коэффициент использования установленной мощности (КИУМ). Так, например, для солнечных станций он может составлять 25-35%, для ветроэлектростанций 20-45%. Возьмем для простоты расчета величину несколько завышенную на уровне 33%. Казалось бы, для покрытия потребности некого объекта в размере 100 мегаватт, нам достаточно поставить ветрогенераторов или солнечных панелей мощностью 300 мегаватт (с КИУМ 33%).

Но все не так просто, одно из негативных свойств ПАГ – сильная разница в сезонной выработке энергии. Например, солнечные панели в некоторых районах Европы вырабатывают зимой в пять раз меньше энергии, чем летом. Если предположить, что зимнее и летнее потребление примерно одинаковое (хотя это, как вы понимаете, очень смелое допущение), то чтобы обеспечить закрытие зимней потребности только с помощью солнечных электростанций, придется поставить в несколько раз больше панелей. Они позволят закрывать зимнюю потребность, но эта установка дополнительных панелей приведет к тому, что летом будет генерироваться «лишняя» энергия, в разы превышающая потребность. В результате «летняя» энергия будет просто теряться, снижая тем самым среднегодовой коэффициент использования установленной мощности панелей до величин, полностью убивающих экономическую целесообразность.

Управление спросом

Управление спросом можно разделить на несколько направлений:

  • экономически оправданное управление, при котором за счет внедрения относительно недорогих решений сдвигается по времени массовое потребление энергии;
  • экономически неоправданные решения, при которых стоимость нового оборудования и затраты на реконструкцию в разы превышают потенциальную экономию;
  • экономически разрушительные предложения, согласно которым промышленность или транспорт должны работать в прерывистом режиме с учетом наличия/отсутствия «чистой» энергии.

Безусловно, экономически оправданные решения должны все шире использоваться в нашей жизни – для снижения потребности в дорогом «пиковом» электричестве, вот только это не имеет никакого отношения к ПАГ. Во-первых, потенциал таких методов крайне мал, он не превышает нескольких процентов на годовом масштабе. Во-вторых, этого потенциала не хватит даже для выравнивания естественной пилы потребления, и уже точно не хватит для балансировки еще и пилы производства.

Дублирование традиционной пиковой генерирующей энергетики

В результате методом исключения у нас остается всего один реальный, а не фэнтезийный, метод балансировки пилы производства – держать в системе резервную, дублирующую структуру пиковой генерации, которая по необходимости включается и спасает ситуацию, обеспечивая стабильность энергосистемы.

Можно называть это дополнительной балансировкой, можно называть это паразитированием ПАГ на традиционной энергетике, можно даже использовать нецензурные выражения, результат будет только один – это всегда увеличивает совокупные расходы на функционирование энергосистемы.

Дублирование системы пиковой генерации – это расходы на капитальные затраты по ее созданию и подключению к энергосистеме, при этом себестоимость производства электроэнергии объектами пиковой генерации, как мы уже говорили, значительно выше, чем в случае генерации базовой. Эти дополнительные затраты с лихвой перекрывают так называемую «экономию топлива». Именно «так называемую» и именно в кавычках.

Какая-то экономия топлива может происходить до тех пор, пока доля ПАГ мала, как только количество установленных альтернативных мощностей прерывистой генерации становится значительным, ПАГ начинает убивать диспетчиризуемую энергетику. Это – следствие существующих методов ценообразования, при которых дотируемая ПАГ имеет возможность занижать цены, а также законодательное предпочтительное предоставление доступа ПАГ-электроэнергии в сеть. В результате в периоды наличия возобновляемого ресурса, например, в полдень летом или во время сильных ветров, традиционные станции вынуждены или останавливать свою работу или платить потребителям (те самые «отрицательные цены», о которых с восторгом пишут адепты «зеленой энергетики») за отдаваемую ими в сеть электроэнергию.

Поскольку станции базовой генерации не предназначены для частых запусков и остановок, такой режим работы для них всегда является убыточным. Согласно отчёту организации «Карбон Трекер», 55% угольных станций Европы работает в убыток. Почти повсеместно в убыток работают и газовые станции с турбинами комбинированного типа. Рано или поздно такие станции закрываются или по экономическим причинам, или из-за устаревания, поскольку в таких условиях их реконструкция нерентабельна, и в результате энергосистема остается без станций базовой нагрузки. Функции этих станций в Европе начинают выполнять комбинации из ПАГ и газовых пикеров. Газовые пикеры по своему замыслу и по конструкции предназначены исключительно для выработки небольшого объема дорогой генерации. Они задуманы, сконструированы таким образом, что используют неэффективные методы работы и тратят больше единиц топлива на выработку единицы электроэнергии – такова плата за возможность в считанные секунды выйти на максимум мощности и мгновенно отключиться, как только необходимость в сглаживании пика пропадает. Получается, что общество в течение 20-35% времени будет «экономить» топливо за счет простаивания базовой генерации, а в течение 65-80% времени будет тратить топливо примерно на 15-20% менее эффективно. В результате суммарный эффект «помощи» ПАГ в деле экономии топлива становится либо близким к нулю, либо отрицательным.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Басы в технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: