Параметры кварцевых резонаторов
Номинальная частота – частота Fн, указанная на маркировке или в документации на кварцевый резонатор (измеряется в МГц или кГц). Базовая частота – реальная частота резонатора Fо, измеренная в заданных условиях эксплуатации. Как правило, определяются только климатические условия, а именно базовая температура окружающей среды То, (равная 25± 2°С для резонаторов со срезом типа АТ). Рабочая частота – реальная частота резонатора F, измеренная в реальных условиях эксплуатации (климатических, механических и электрических). Обычно определен только допустимый диапазон изменения рабочей температуры.
Будет интересно Что такое подстроечный резистор: описание устройства и область его применения
Точность настройки частоты – максимально допустимое относительное отклонение базовой частоты резонатора от номинальной частоты. Измеряется в миллионных долях от номинальной частоты, обозначаемых как ppm (part per m illion) или 1•10 -6. В отдельных редких случаях значение этого параметра приводится в процентах. Как правило, значение точности настройки частоты кварцевого резонатора выбираются из стандартного ряда.
Параметры кварцевых резонаторов.
Температурная нестабильность частоты
Относительное отклонение рабочей частоты резонатора от базовой частоты. Может быть представлено в виде зависимости от рабочей температуры T, в соответствии с формулой для кварцевых пластин с типом среза АТ и формулой (4) для кварцевых пластин остальных типов. Долговременная нестабильность частоты (старение) – систематическое изменение базовой частоты с течением времени из-за внутренних изменений в кварцевом резонаторе. Параметр старения задается как относительное изменение базовой частоты за заданный промежуток времени. Это значение выражается в частях миллиона за год (например, 3 ppm / year ). Уход частоты под влиянием старения в максимальной степени сказывается в течение первых 30 – 60 дней эксплуатации, после чего влияние этого фактора уменьшается. Стандартный ряд относительных отклонений частоты для резонаторов общего назначения включает следующие классы точности: ±5, ±10, ±15, ±20, ±30, ±50, ±75 и ±100 ppm.
Материал в тему: устройство подстроечного резистора.
Режим работы резонатора (номер гармоники)
Режим работы резонатора – неизменяемый параметр, определяющий частоту колебания. Для кристаллов кварца может использоваться не только основная частота, но и ее нечетные гармоники – обертоны. Например, кристалл может работать на основной частоте 10 МГц, или в нечетных гармониках приблизительно 30 МГц (третий обертон), 50 МГц (пятый обертон) и 70 МГц (седьмой обертон).
Принцип работы кварцевого резонатора
Работает прибор на основе пьезоэффекта, проявляющегося на пластинке из кварца, причем низкотемпературного. Элемент вырезают из цельного кристалла кварца, соблюдая задаваемый угол. Последний определяет электрохимические параметры резонатора.
Пластинки с обеих сторон покрывают слоем серебра (подходит платина, никель, золото). Затем их прочно фиксируют в корпусе, который герметизируется. Устройство представляет колебательную систему, которая обладает собственной резонансной частотой.
Когда электроды подвергаются переменному напряжению, пластинка из кварца, обладающая пьезоэлектрическим свойством, изгибается, сжимается, сдвигается (зависит от типа обработки кристалла). Одновременно в ней появляется противо-ЭДС, как это происходит в катушке индуктивности, находящейся в колебательном контуре.
Когда подается напряжение с частотой, совпадающей с собственными колебаниями пластинки, то в устройстве наблюдается резонанс. Одновременно:
- у элемента из кварца увеличивается амплитуда колебаний;
- сильно уменьшается сопротивления резонатора.
Энергия, которая необходима для поддержания колебаний, в случае равенства частот низкая.
Электрические параметры
Эквивалентная схема кварцевого резонатора – представляет собой электрическое описание кварцевого резонатора, работающего на резонансной частоте. Эквивалентная схема кварцевого резонатора представлена на рисунке 1. С0 – шунтирующая емкость. R1, L1 и С1 – соответственно динамическое сопротивление, динамическая индуктивность и динамическая емкость. Динамические параметры представляют собой соответствующие эквиваленты резонатора как электромеханической системы и определяются, в основном, характеристиками среза кварцевого элемента.
Шунтирующая емкость C0 – Емкость между выводами кристалла. Измеряется в пикофарадах. Шунтирующая емкость складывается из паразитной емкости кварца, емкости области электродов кристалла и емкости, вносимой кристаллодержателем. Шунтирующая емкость имеет значение порядка единиц пФ.
Динамическое сопротивление R1 – Параметр, характеризующий энергетические потери в колебательном контуре. Динамическое сопротивление R1 кварцевых резонаторов изменяется в интервале от нескольких Ом до сотен кОм в зависимости от частоты резонанса, номера гармоники и ряда конструктивных факторов. Часто обозначается как эквивалентное последовательное сопротивление ESR.
Динамическая индуктивность L1 – Параметр, характеризующий эквивалент массы в колебательном контуре. Динамическая индуктивность L1 кварцевых резонаторов изменяется в интервале от тысяч Гн для резонаторов низких частот до нескольких мГн для высокочастотных резонаторов.
Частота резонанса F – частота, определяемая в соответствии с формулой (5)
Емкость нагрузки СL
Рис. 2. Согласование емкости нагрузки
Измеренное или вычисленное значение емкости, включенной параллельно с кварцевым резонатором. Резонансная частота кварца, включенного в реальную электрическую цепь, будет изменяться в некоторых пределах при разных значениях емкости нагрузки. Для упрощения взаимодействия заказчиков и производителей резонаторов практикуется настройка резонаторов при определенном значении нагрузочной емкости. В этом случае измеренная частота должна соответствовать номинальной с учетом указанной точности настройки.
Как правило, для согласования емкости нагрузки используют конденсаторы Cg , подключаемые между выводами кварцевого резонатора и общим проводом (рисунок 2). Расчет номинала емкости конденсаторов Cg осуществляется по формуле (6), где CL – емкость нагрузки, указанная в технической документации, а CS – значение паразитной емкости (примерно 5 пФ).
Например, для емкости нагрузки равной 16 пФ имеем
Cg = 2·(16-5) = 22 пФ
Уровень управления (drive level)
Обычно определяется как мощность, рассеиваемая кварцевым резонатором. Минимальное значение этого параметра определяется количеством энергии, необходимой для нормального запуска резонатора и обеспечения устойчивых колебаний. Однако повышенное значение этого параметра может вызвать ухудшение параметров старения и механические повреждения кристалла.
Главная —
Микросхемы —
DOC —
ЖКИ —
Источники питания —
Электромеханика —
Интерфейсы —
Программы —
Применения —
Статьи
Кварцевые генераторы Silicon Labs с цифровой обработкой
Компания Silicon Labs выпускает и кварцевые генераторы с цифровой и аналоговой обработкой сигнала по запатентованной технологии DSPLL (рис. 4). В отличие от традиционных кварцевых генераторов, в которых необходимы различные кварцевые резонаторы для обеспечения требуемой выходной частоты, кварцевые генераторы Silicon Labs используют единственный кварц определенной частоты для обеспечения широкого диапазона выходных частот. Устройства конфигурируются при производстве на широкий диапазон различных характеристик: частоту, напряжение питания, температурную стабильность, тип выхода, что позволяет сократить большие сроки изготовления, связанные с заказными генераторами.
Кварцевые генераторы Si570 и Si598 на любую частоту программируются по интерфейсу I2C. Блок-схема генератора Si598 представлена на рис. 5.
Сравнить характеристики перечисленных устройств можно с помощью таблицы 1.
Параметры конкретных моделей генераторов c напряжением питания 3,3 В приведены в таблице 2.
В таблицу 2 включено популярное семейство генераторов компании Golledge. У генераторов Golledge существуют версии с низким энергопотреблением (до 0,5 мкА), работающие в расширенном температурном диапазоне (–55…+125 °C), с быстрым временем запуска (типовое значение 0,2 мс для GXO-3332).
Принцип действия
На пластинку, кольцо или брусок, вырезанные из кристалла кварца определённым образом, нанесены 2 и более электродов — проводящие полоски.
Пластинка закреплена и имеет собственную резонансную частоту механических колебаний.
При подаче напряжения на электроды благодаря пьезоэлектрическому эффекту происходит изгибание, сжатие или сдвиг в зависимости от того, каким образом вырезан кусок кристалла.
Однако колеблющаяся пластинка в результате того же пьезоэлектрического эффекта создаёт во внешней цепи противо-ЭДС, что можно рассматривать как явление, эквивалентное работе катушки индуктивности в колебательном контуре.
Если частота подаваемого напряжения равна или близка к частоте собственных механических колебаний пластинки, затраты энергии на поддержание колебаний пластинки оказываются намного ниже, нежели при большом отличии частоты. Это тоже соответствует поведению колебательного контура.
Эквивалентная схема
Условное обозначение кварцевого резонатора (сверху) и его эквивалентная схема (снизу)
C — собственная ёмкость кристалла, образуемая кристаллодержателем и/или обкладками резонатора.
C1, L1 — эквивалентная ёмкость и индуктивность механической колебательной системы резонатора.
R1 — эквивалентное сопротивление потерь механической колебательной системы.
Возможно, вам также будет интересно
Немного истории Обычным биполярным транзисторам понадобилось почти полвека, чтобы преодолеть «барьер» во времени включения в 1 нс. Лишь к концу 1970-х годов, к примеру, в СССР был разработан транзисторный генератор наносекундных импульсов Г5-78, обеспечивающий получение импульсов с амплитудой до 5 В на нагрузке 50 Ом (амплитуда тока 0,1 А) с временем нарастания 1 нс. Он
Эта статья знакомит читателя с токоизмерительными резисторами, их основными параметрами, методами измерения тока, а также преимуществами и недостатками трех типовых схем измерения тока на стороне источника. Измерительные резисторы Ток почти всегда измеряется косвенно — часто по падению напряжения (V = I×R) на резисторе, через который он протекает. Токоизмерительные резисторы недороги, могут обеспечивать высокую точность измерения в диапазоне от очень слабых до средних токов и пригодны для
Высокотемпературные N-канальные МОП-транзисторы со встроенным драйвером от X-REL Semiconductor
Что это такое, и зачем он нужен
Прибор является источником, обеспечивающим гармонические колебания высокой точности. Имеет, при сравнении с аналогами, большую эффективность работы, стабильные параметры.
Первые образцы современных устройств появились на радиостанциях в 1920-1930 гг. как элементы, имеющие стабильную работу, способные задавать несущую частоту. Они:
- пришли на смену кристальным резонаторам, работавшим на сегнетовой соли, появившимся в 1917 в результате изобретения Александра М. Николсона и отличавшимся нестабильностью;
- заменили использовавшуюся ранее схему с катушкой и конденсатором, которая не отличалась большой добротностью (до 300) и зависела от температурных изменений.
Чуть позже кварцевые резонаторы стали составной частью таймеров, часов. Электронные компоненты с собственной резонансной частотой 32768 Гц, которая в двоичном 15-разрядном счетчике задает временной промежуток равный 1 секунде.
Приборы используются сегодня в:
- кварцевых часах, обеспечивая им точность работы независимо от температуры окружающей среды;
- измерительных приборах, гарантируя им высокую точность показателей;
- морских эхолотах, которые применяются при исследованиях и создании карт дна, фиксации рифов, отмелей, поиска объектов, находящихся в воде;
- схемах, соответствующих опорным генераторам, синтезирующим частоты;
- схемах, применяемых при волновом указании SSB или сигнала телеграфа;
- радиостанциях с DSB-сигналом с промежуточной частотой;
- полосовых фильтрах приемников супергетеродинного типа, которые более стабильны и добротны, чем LC-фильтры.
Устройства изготавливаются с разными корпусами. Делятся на выводные, применяемые в объемном монтаже, и SMD, используемые в поверхностном монтаже.
Их работа зависит от надежности схемы включения, влияющей на:
- отклонение частоты от необходимого значения, стабильность параметра;
- темп старения прибора;
- нагрузочную емкость.
Пьезоэлектрики
На самом деле, кварц – это один из самых распространенных минералов в земной коре. Его доля составляет около 60%! Если полупроводниковые радиокомпоненты в основном делают из кремния, то кварц тоже состоит из кремния но в связке с кислородом. Его химическая формула SiO2.
Выглядит минерал кварц примерно вот так.
минерал кварц
Ну прямо как сокровище какое-то! Но ценность этого сокровища спрятана не в самом кварце, а в том, каким свойством он обладает. И этот эффект кварца сделал революцию в прецизионной (точной) электронике для генерации высокостабильных колебаний электрического сигнала.
Еще в 19 веке два брата Кюри обнаружили интересное свойство некоторых твердых кристаллов генерировать ЭДС , деформируя эти кристаллы. Деформация – это изменение формы какого-либо тела с помощью кручения, удара, растяжения и так далее. Так вот, ударяя по таким кристаллам, они обнаружили, что те могут выдавать какое-либо кратковременное напряжение.
пьезоэффект
Но они также обнаружили еще и обратный эффект. При подаче напряжения на такие кристаллы, эти кристаллы деформировались сами. Невооруженным глазом это было практически не заметно. Такой эффект назвали пьезоэффектом, а вещества – пьезоэлектриками.
Следует заметить, что ЭДС возникает только в процессе сжатия или растяжения. Может быть вы подумали, что можно прижать такой кристалл какой-нибудь увесистой болванкой и всю жизнь получать из него энергию? Как бы не так! Кстати, радиоэлемент пьезоизлучатель тоже относится к пьезоэлектрикам, и из него можно получить ЭДС. Ниже можно рассмотреть этот случай на видео. Светодиод, подпаянный к пьезоизлучателю, зажигается при ударе самого пьезоизлучателя.
Не так давно смотрел фильм по National Geographic. Там целые пьезоэлектрические плиты устанавливали на дороге. По ним ходили люди и вырабатывали электрическую энергию, сами того не подозревая). Кстати, очень халявная, чистая и возобновляемая энергия. Ладно, что-то отвлекся… Так вот, кристаллы кварца тоже обладают пьезоэффектом и способны также вырабатывать ЭДС или деформироваться (изгибаться, изменять форму) под воздействием электрического тока.
Литература
16-бит | MSP430 • MCS-96 • MCS-296 • PIC24 • MAXQ • Nios • 68HC12 • 68HC16 |
32-бит | ARM • MIPS • AVR32 • PIC32 • 683XX • M32R • SuperH • Nios II • Am29000 • LatticeMico32 • MPC5xx • PowerQUICC • Parallax Propeller |
Производители
Analog Devices • Atmel • Silabs • Freescale • Fujitsu • Holtek • Hynix • Infineon • Intel • Microchip • Maxim • Parallax • NXP Semiconductors • Renesas • Texas Instruments • Toshiba • Ubicom • Zilog • Cypress • Интеграл • Миландр
Компоненты
Регистр • Процессор • SRAM • EEPROM • Флеш-память • Кварцевый резонатор • Кварцевый генератор • RC-генератор • Корпус
Периферия
Таймер • АЦП • ЦАП • Компаратор • ШИМ-контроллер • Счётчик • LCD • Датчик температуры • Watchdog Timer
Интерфейсы
CAN • UART • USB • SPI • I²C • Ethernet • 1-Wire
FreeRTOS • μClinux • BeRTOS • ChibiOS/RT • eCos • RTEMS • Unison • MicroC/OS-II • Nucleus • Contiki
Программирование
JTAG • • Программатор • Ассемблер • Прерывание • MPLAB • AVR Studio • MCStudio
Способ № 1
Здесь транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а затем сам импульс передаёт на аналоговый частотомер, который построен на двух диодах Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все остальные элементы служат для стабильности работы схемы и чтобы ничего не перегорело. Зависимо от установленной частоты может меняться напряжение, которое есть на конденсаторе С4. Это довольно приблизительный способ и его преимущество – легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но существуют определённые ограничения: пробовать её на данной схеме следует только в тех случаях, если она находится в приблизительных рамках от трех до десяти МГц. Проверка кварцевых резонаторов, что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но далее будет рассмотрен чертеж, у которого диапазон — 1-10 МГц.
Емкость нагрузки СL
Измеренное или вычисленное значение емкости, включенной параллельно с кварцевым резонатором. Резонансная частота кварца, включенного в реальную электрическую цепь, будет изменяться в некоторых пределах при разных значениях емкости нагрузки. Для упрощения взаимодействия заказчиков и производителей резонаторов практикуется настройка резонаторов при определенном значении нагрузочной емкости. В этом случае измеренная частота должна соответствовать номинальной с учетом указанной точности настройки.
Как правило, для согласования емкости нагрузки используют конденсаторы Cg , подключаемые между выводами кварцевого резонатора и общим проводом (рисунок 2). Расчет номинала емкости конденсаторов Cg осуществляется по формуле (6), где CL – емкость нагрузки, указанная в технической документации, а CS – значение паразитной емкости (примерно 5 пФ).
Например, для емкости нагрузки равной 16 пФ имеем:
Cg = 2·(16-5) = 22 пФ
Обычно определяется как мощность, рассеиваемая кварцевым резонатором. Минимальное значение этого параметра определяется количеством энергии, необходимой для нормального запуска резонатора и обеспечения устойчивых колебаний. Однако повышенное значение этого параметра может вызвать ухудшение параметров старения и механические повреждения кристалла.
Современный и устаревший резонаторы.
Пьезоэлектрики
На самом деле, кварц – это один из самых распространенных минералов в земной коре. Его доля составляет около 60%! Если полупроводниковые радиокомпоненты в основном делают из кремния, то кварц тоже состоит из кремния но в связке с кислородом. Его химическая формула SiO2.
Выглядит минерал кварц примерно вот так.
минерал кварц
Ну прямо как сокровище какое-то! Но ценность этого сокровища спрятана не в самом кварце, а в том, каким свойством он обладает. И этот эффект кварца сделал революцию в прецизионной (точной) электронике для генерации высокостабильных колебаний электрического сигнала.
Еще в 19 веке два брата Кюри обнаружили интересное свойство некоторых твердых кристаллов генерировать ЭДС , деформируя эти кристаллы. Деформация – это изменение формы какого-либо тела с помощью кручения, удара, растяжения и так далее. Так вот, ударяя по таким кристаллам, они обнаружили, что те могут выдавать какое-либо кратковременное напряжение.
пьезоэффект
Но они также обнаружили еще и обратный эффект. При подаче напряжения на такие кристаллы, эти кристаллы деформировались сами. Невооруженным глазом это было практически не заметно. Такой эффект назвали пьезоэффектом, а вещества – пьезоэлектриками.
Следует заметить, что ЭДС возникает только в процессе сжатия или растяжения. Может быть вы подумали, что можно прижать такой кристалл какой-нибудь увесистой болванкой и всю жизнь получать из него энергию? Как бы не так! Кстати, радиоэлемент пьезоизлучатель тоже относится к пьезоэлектрикам, и из него можно получить ЭДС. Ниже можно рассмотреть этот случай на видео. Светодиод, подпаянный к пьезоизлучателю, зажигается при ударе самого пьезоизлучателя.
Не так давно смотрел фильм по National Geographic. Там целые пьезоэлектрические плиты устанавливали на дороге. По ним ходили люди и вырабатывали электрическую энергию, сами того не подозревая). Кстати, очень халявная, чистая и возобновляемая энергия. Ладно, что-то отвлекся… Так вот, кристаллы кварца тоже обладают пьезоэффектом и способны также вырабатывать ЭДС или деформироваться (изгибаться, изменять форму) под воздействием электрического тока.
Тесты осцилляции схем
NDK активно сотрудничает с производителями микроконтроллеров, различных чипсетов и модулей, а также ведет постоянную тесную работу с конечными заказчиками, применяющими в своих изделиях различные чипсеты и кварцевую продукцию. Свой опыт производства кварцевых продуктов, а также опыт сотрудничества с производителями чипсетов и модулей NDK готов предлагать своим заказчикам для облегчения их работы по подбору компонентов для своих изделий. NDK располагает двумя лабораториями – одна в Японии на базе фабрики в г. Саяма и другая в Германии в г. Зинсхайме, где в сотрудничестве с крупнейшими производителями микропроцессоров и чипсетов проводит большую работу по проведению испытаний, направленных на достижение наилучшей совместимости кварцевых компонентов NDK с микросхемами ведущих производителей (IC matching test).
Кварцевые резонаторы, подключаемые к различным микросхемам, микропроцессорам, БИС/СБИС (LSI/VLSI), в некотором смысле являются «дирижерами», управляющими многими тысячами логических элементов, поэтому качество совместной работы микросхем и подключаемых к ним резонаторов имеет важное значение для работы всего устройства (прибора, системы) в целом. Для обеспечения стабильной работы на заданных частотах внутренних тактовых генераторов микросхем с внешними кварцевыми резонаторами необходим правильный выбор номиналов внешних компонентов, в общем случае подключаемых к резонатору по схеме, приведенной на рис
10. Показанные на схеме инвертирующий усилитель и буфер являются внутренними элементами микросхем. В ряде случаев резистор Rf может не устанавливаться, а вместо резистора Rd устанавливаться перемычка, иногда не требуется установка и конденсаторов на входе или выходе генератора. При работе в штатном режиме кварцевый резонатор и конденсаторы образуют П-образный фильтр , обеспечивающий фазовый сдвиг 180°, необходимый для запуска генератора на частоте, определяемой резонатором (так называемая схема генератора Пирса)
Для обеспечения стабильной работы на заданных частотах внутренних тактовых генераторов микросхем с внешними кварцевыми резонаторами необходим правильный выбор номиналов внешних компонентов, в общем случае подключаемых к резонатору по схеме, приведенной на рис. 10. Показанные на схеме инвертирующий усилитель и буфер являются внутренними элементами микросхем. В ряде случаев резистор Rf может не устанавливаться, а вместо резистора Rd устанавливаться перемычка, иногда не требуется установка и конденсаторов на входе или выходе генератора. При работе в штатном режиме кварцевый резонатор и конденсаторы образуют П-образный фильтр , обеспечивающий фазовый сдвиг 180°, необходимый для запуска генератора на частоте, определяемой резонатором (так называемая схема генератора Пирса).
При проведении тестов на совместимость микросхем компания NDK экспериментально определяет параметры, имеющие важнейшее значение для стабильного запуска и функционирования кварцевого резонатора в составе конкретных микросхем при определенных условиях.
Сфера применения
- кварцевые часы, обеспечивая точность работы независимо от температуры окружающей среды;
- измерительные приборы, гарантируя им высокую точность показателей;
- морские эхолоты, которые применяются при исследованиях и создании карт дна, фиксации рифов, отмелей, поиска объектов, находящихся в воде;
- схемы, соответствующие опорным генераторам, синтезирующим частоты;
- схемы, применяемые при волновом указании SSB или сигнала телеграфа;
- радиостанции с DSB-сигналом с промежуточной частотой;
- полосовые фильтры приемников супергетеродинного типа, которые более стабильны и добротны, чем LC-фильтры.
Заключение
Благодаря развитию технологий КМОП для аналоговых и цифровых сигналов кремниевые генераторы, такие как Si500, становятся конкурентными с генераторами, которые традиционно используют кристалл кварца или MEMS-резонатор. Отказавшись от использования механического резонатора, можно значительно улучшить надежность их работы, например, с точки зрения устойчивости к удару и вибрациям, а также с точки зрения времени запуска генератора. К тому же процесс производства Si500 позволяет получить короткие и предсказуемые сроки производства по сравнению с традиционными кварцевыми генераторами.
Кремниевые генераторы дают возможность получить высокие значения частоты — до 200 МГц, обеспечивают хорошие значения джиттера, широкий выбор уровней выходного сигнала, позволяют получить любое, в том числе нестандартное, значение частоты. При этом выбор габаритных размеров генератора ограничен одним корпусом, а суммарная нестабильность частоты больше, чем у стандартных кварцевых или цифровых генераторов. Следует добавить, что кремниевые генераторы в настоящее время не предназначены для работы при отрицательных температурах. Silicon Labs планирует выпустить новые версии, работающие в температурном диапазоне –40…+85 °C и имеющие суммарную нестабильность ±50 ppm, а также расширить ассортимент корпусов.
Кварцевые генераторы Golledge выпускаются в широком ассортименте типоразмеров и характеристик, имеется возможность выбора необходимого параметра, например малого энергопотребления, расширенного температурного диапазона (–55…+125 °C), миниатюрного корпуса (до 2,6×2,1×0,9 мм) и т. д. Кварцевые генераторы — это стандартная продукция, которую выпускает множество производителей, и, следовательно, на стандартные, широко распространенные частоты на рынке всегда можно найти склад и альтернативу. По стоимости кварцевые генераторы имеют преимущество, в том числе благодаря их массовому использованию, что снижает стоимость единичного изделия.
Кварцевые генераторы с цифровой обработкой фирмы Silicon Labs дают лучшее значение джиттера, позволяют получать для некоторых типов выходного сигнала наибольшее возможное значение частоты по сравнению с традиционными кварцевыми или кремниевыми генераторами. Из недостатков можно отметить высокое энергопотребление и бoльшую стоимость. Кварцевые генераторы Silicon Labs целесообразно использовать в сложных системах, для которых одновременно требуется несколько значений рабочих частот и низкие значения джиттера.
Заключение
Компания GEYER ELECTRONIC предлагает широкую номенклатуру различных генераторов:
- стандартные и прецизионные генераторы (PXO и XO) для различных частот в различных корпусах;
- генераторы с частотой, управляемые напряжением (VCO и VCXO);
- термокомпенсированные генераторы (TCXO);
- термокомпенсированные генераторы с частотой, управляемые напряжением (VCTCXO);
- генераторы с различными выходными уровнями напряжений (TTL, CMOS, LVDS, PECL);
- генераторы с различной формой выходных сигналов (прямоугольной, урезанной синусоидой, распределенным спектром).
Такое многообразие позволяет удовлетворить требованиям самых специфичных задач.